HPS Test Run Tracking and Vertexing

Tim Nelson - **SLAC**

HPS Collaboration Meeting - JLab

5/26/2011

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

 \odot

HPS Tracking Group

	Personnel	Critical Expertise	Key Resources
SLAC	Nelson Oriunno Haller/Herbst Partridge Graham + students, technicians	silicon tracking, radiation-tolerant silicon design, silicon operation in vacuum, low-noise electronics, high-speed DAQ, analysis techniques	Silicon cleanroom including probe station, multi-sensor CMM, assembly space, DAQ space, laser test setup
UCSC	Grillo Fadeyev + students, technicians	radiation-tolerant silcion design, low-noise electronics, DAQ, wirebonding, sensors	Silicon lab including probe station, wirebonder, space for DAQ
FNAL	Cooper + technicians	Run IIb sensors, composite design and fabrication, cooling	SiDet, composites lab

Test Run Objective

To ensure that the HPS tracker concept has no critical faults

technical (e.g. operation in vacuum, adjacent to beam, etc.)

- physics environment (e.g. occupancies from primaries and secondaries)
- Operation of a few tracker planes in the most challenging conditions proposed for the full experiment will address these issues

Sensitivity to physics in the test run requires some additional work (and luck), but naturally promotes these objectives

Challenges

- At relevant beam energies and interesting A' masses, decay products tend to be electrons with momenta order a few GeV. Multiple scattering...
 - dominates both mass and vertexing measurement errors
 - leads to pattern recognition mistakes in dense environments
- Proximity to target means primary beam must pass through apparatus.
 - scattered beam sweeps out a "dead zone" of extreme occupancy and radiation, compounded by beam-gas interactions
 - Puts low-mass acceptance in opposition to longevity and tracking purity
- Long-lived A' signal very small: vertexing must be exceedingly pure to eliminate fakes.
- Small experiment on a hot topic: time and money are precious.

Challenges \Rightarrow Design Principles

Mass and vertex resolution

- Iow-mass construction
- Occupancies and radiation
 - fast, robust sensors / readout
 - 🔒 movability / replaceability
 - 👶 operation in vacuum
- Acceptance/Purity
 - optimized sensor layout
- Schedule/Budget sensitivity
 - reuse and recycle

Sensors

pixels too massive, costly, complex: microstrips are the simple, lightweight solution

Production Tevatron Runllb sensors

- many capable of 1000V bias: fully depleted to > 4×10¹⁵ e⁻/cm²
- 🔒 Fine readout granularity
- Available in sufficient quantity

Cut Dimensions (L×W)	100 mm × 40.34mm		
Active Area (L×W)	98.33 mm × 38.34mm		
Readout (Sense) Pitch	60μm (30μm)		
# Readout (Sense) Strips	639 (1277)		
Breakdown Voltage	>350V		
Total Interstrip Capacitance	<1.2 pF/cm		
Defective Channels	<1%		

Readout ASIC: APV25

 $-\bigcirc$

DAQ: APV25 Hybrids

- Hybrid design derived from CMS schematics
- Layout is similar to CMS TIB hybrids (but with 5 chips instead of 4)
- Cooling design allows use of FR4 or kapton for substrates
- Similarity of sensor and hybrid pitches eliminates necessity for pitch adapters
- Short kapton pigtails on hybrids connect to extension cables to vacuum flanges

DAO' ATCA

Support and Cooling

CF-composite/rohacell-foam modules

- ♣ 1.0% X₀/layer
- material dominated by Si
- H₂0/glycol at -10°C
 - 🔒 outside tracking volume
 - vacuum minimizes heat load on sensors
- Modules mount on Al support plates
 - support plates travel on vertical rails
 - z-stages at both ends adjust dead zone
 - base plate slides into vacuum chamber

Detector Layout

- Layers I-3: vertexing
- Layers 4-5: pattern recognition with adequate pointing into Layer 3.
- Bend plane measurement in all layers: momentum
- 20 sensors/hybrids
- I00 APV25 chips
 - I 2780 channels

	Layer I	Layer 2	Layer 3	Layer 4	Layer 5
z position, from target (cm)	10	20	30	50	70
Stereo Angle	l 00 mrad	l 00 mrad	l 00 mrad	50 mrad	50 mrad
Bend Plane Resolution (μ m)	≈ 60	≈ 60	≈ 60	≈ I20	≈ 120
Non-Bend Resolution (µm)	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6
# Bend Plane Sensors	2	2	2	2	2
# Stereo Sensors	2	2	2	2	2
Dead Zone (mm)	±1.5	±3.0	±4.5	±7.5	±10.5
Power Consumption (W)	7	7	7	7	7

Dead Zone

Size of dead zone determines low-mass acceptance: nominally 1.5 mrad

X (cm

(un) Y

E c

X (cm

Acceptance

- At smaller masses, dead-zone limits acceptance
- At larger masses, losses due to limited coverage in layers 4 and 5 become important.
- Effective solid angle of dead zone increases with increasing z-vertex position: correlation between mass and coupling in vertexing reach.

Many Details...

Simulations and Performance - Matt Graham

Mechanical Design - Marco Oriunno

Readout and DAQ - Ryan Herbst

COFFEE!!!

Status, Schedule, Plans and Discussion - TKN and All

Additional Slides

Slides on the Full HPS Experiment

SLAC

Challenges \Rightarrow Design Principles

- Mass and vertex resolution
 - Iow-mass construction
- Occupancies and radiation
 - 🔒 fast, robust sensors / readout
 - movability / replaceability
 - 👶 operation in vacuum
- Acceptance/Purity
 - optimized sensor layout

SLAC/FNAL

Low Mass Support/Cooling

CF-composite/rohacell-foam

- I.0% X₀/layer
- dominated by Si

H₂0/glycol at -10°C

- outside tracking volume
- vacuum minimizes heat load on sensors

	Radiation Length (mm)	Thickness (mm)	Coverage/Unit Acceptance	Scattering Material (% X ₀)
Silicon	93.6	0.320	1.2	0.410
Rohacell Foam	13800	3.0	0.5	0.011
Carbon Fiber	242	0.150	0.5	0.031
PGS Passivation	256	0.101	1.25	0.049
Ероху	290	0.050	0.5	0.009
Total	-	-	-	0.510

SLAC/FNAL

Moveable/Replaceable

SLAC

Detector Layout

Layers I-3: vertexing

- Layers 4-6: pattern recognition with adequate pointing into Layer 2.
- Bend plane measurement in all layers: momentum
- 106 sensors/hybrids
- 👶 530 APV25 chips
- 👶 67840 channels

	Layer I	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6
z position, from target (cm)	10	20	30	50	70	90
Stereo Angle	90 deg.	90 deg.	90 deg.	50 mrad	50 mrad	50 mrad
Bend Plane Resolution (µm)	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6
Stereo Resolution (µm)	≈ 6	≈ 6	≈ 6	≈ 120	≈ 120	≈ 120
# Bend Plane Sensors	4	4	6	10	14	18
# Stereo Sensors	2	2	4	10	14	18
Dead Zone (mm)	±1.5	±3.0	±4.5	±7.5	±10.5	±13.5
Power Consumption (W)	10.5	10.5	17.5	35	49	63

Vertexing

Pattern Recognition

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

SLAC

Dead Zone and Acceptance

